(1) 2468 \div 9 has a remainder of ________________
(2) 321 \times 9 - 1 = ________________
(3) 1216 \div 4 = ________________
(4) \frac{19}{400} = ________________ (decimal)
(5) 2016 \div 3 = ________________
(6) DCXX = ________________ (Arabic Numeral)
(7) 12 + 4 \div 8 \times 6 = ________________
(8) 317 - 713 = ________________
(9) 4133 \div 5 = ________________ (decimal)
(10) 94 \times 85 - 76 = ________________
(11) 8\frac{2}{3} - 4\frac{5}{6} = ________________ (mixed number)
(12) 2 + 4 + 6 + 8 + 10 + \ldots + 22 = ________________
(13) 13 \times 2121 = ________________
(14) The sum of the first 4 odd prime numbers is ________________
(15) CMIX - CDIV = ________________ (Arabic Numeral)
(16) Which is larger: \frac{7}{9} or 0.8? ________________
(17) 48 \times 28 + 27 \times 28 = ________________
(18) 108 \times 109 = ________________
(19) 280 plus 30\% of 320 is ________________
(20) 8 \times 15 \times 1947 = ________________
(21) 12^3 = ________________
(22) 3\frac{1}{6} - 6\frac{1}{3} = ________________ (mixed number)
(23) If the area of a square is 72 sq. in., then the length of its diagonal is ________________ in.
(24) 45 is 2\frac{1}{2}\% of ________________
(25) If f(x) = 2x^3 - 6x^2 + 6x - 2, then f(4) = ________________
(26) 21 \times 336.7 = ________________ (decimal)
(27) How many positive integral divisors does 40 have? ________________
(28) 91 \times 55 = ________________
(29) Find the units digit of 4^9. ________________
(30) 36089 \div 239 = ________________
(31) 33 \times 91 = ________________
(32) 112 \times 102 = ________________
(33) 109 \times 107 = ________________
(34) Given: 2, 7, 9, 16, 25, 41, k, 107, 173, \ldots, k = ________________
(35) \frac{2}{3}\% of 333\frac{1}{3} is ________________
(36) A regular hexagon with side length of 4'' has a perimeter of ________________ inches
(37) 15^2 + 45^2 = ________________
(38) A square with a side length of 8\sqrt{5} has an area of ________________
(39) If f(x) = 4x^2 - 12x + 9 then f(9) = ________________
(40) 31.25\% \times 481 \div \frac{1}{16} = ________________
(41) \frac{4}{25} - \frac{11}{76} = ________________
(42) If P is 20\% of Q and Q is 25\% of R, then P is what percent of R? ________________
(43) The slope of the line x + 2y = 4 is ________________
(44) The sum of the roots minus the product of the roots of 15x^2 - 13x + 10 = 0 is ________________
(45) The sides of a right triangle are integers. If one leg is 7 in., then the other leg is _______ in.
(46) \[\frac{3}{14} = \text{______________}\%\]
(47) The arithmetic mean of 22, 43, and 52 is _______
(48) The number of distinct diagonals in a regular octagon is _______
(49) If \[7^2 + b^2 = 25^2,\] then \[|b| = \text{______________}\]
*(50) \[12 \times 24 \times 36 \times 48 = \text{______________}\]
(51) The number of distinct diagonals of a regular nonagon is _______
(52) Find the 25th term of 3, 8, 13, 18, 23, . . . ______
(53) \[(3i - 2) \div (3i + 2) = a + bi.\] \[b = \text{______________}\]
(54) \[326 \div 56 \times 46 = \text{______________}\]
(55) The largest number of regions created by five intersecting lines is _______
(56) \[1^2 + 2^2 + 3^2 + \ldots + 7^2 = \text{______________}\]
(57) If log 2 = .3 and log 3 = .48, then log 6 = ______
(58) The sum of the coefficients of the expansion \[(4x - 2y)^3\] is ______
(59) \[(3 - 2i)^2 = a + bi\] and \[a = \text{______________}\]
*(60) \[87493 \div 12497 \times 625 = \text{______________}\]
(61) If \[f(x) = 2x - 5\] and \[g(x) = 4x + 3,\] then \[f(g(-1)) = \text{______________}\]
(62) If \[g(2x-1) = 3^{x+2},\] then \[x = \text{______________}\]
(63) \[\pi \div 5\] radians = ________________ degrees
(64) \[\sqrt{5329} = \text{______________}\]
(65) \[6 + 2 + \frac{2}{3} + \ldots = \text{______________}\]
(66) 4 coins are tossed. What is that probability of getting all four tails? \[\text{______________}\]
(67) \[12^6 \div 5\] has a remainder of \[\text{______________}\]
(68) \[(x^3 + 2x^2 + x + 4) \div (x + 1)\] has a remainder of \[\text{______________}\]
(69) Find the sum of the squares of the roots of the equation \[x^2 + 5x + 6 = 0.\] \[\text{______________}\]
*(70) The surface area of a right cylinder with a radius of \[3''\] and a height of \[4''\] is \[\text{______________}\] sq. in.
(71) The phase shift of \[5 \cos 4(x + 3) - 2\] is ______
(72) Let \[f(x) = 2x^3 + 3x^2 + 2x + 3.\] Find \[f''(-2).\] \[\text{______________}\]
(73) \[\frac{1}{18} + \frac{1}{36} + \frac{1}{60} = \text{______________}\]
(74) \[2(1!) + 3(2!) + 4(3!) + 5(4!) + 6(5!) = \text{______________}\]
(75) \[111 \times 27 = \text{______________}\]
(76) Find \(x,\) if \[\det \begin{bmatrix} 1 & -2 \\ x & 4 \end{bmatrix} = 5.\] \[\text{______________}\]
(77) \[\frac{1}{2} \times \frac{2}{3} \times \frac{4}{5} \times \frac{6}{7} = \text{______________}\]
(78) The vertical displacement of \[y = 5 \cos 4(x + 3) - 2\] is \[\text{______________}\]
(79) \[1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 = \text{______________}\]
*(80) \[223121 \div (101 \times 11) = \text{______________}\]