(1) 2416 ÷ 8 = ____________________________

(2) 299 × 12 + 12 = ____________________________

(3) \(\frac{5}{4} \times \frac{1}{7} = \) ____________________________ (fraction)

(4) 504 × 8 = ____________________________

(5) 64\% = ____________________________ (proper fraction)

(6) 30 ÷ 1\frac{1}{5} = ____________________________

(7) \(\frac{3}{8} \% = \) ____________________________ (decimal)

(8) \(\frac{9}{10} \times \frac{2}{3} = \) ____________________________

(9) 1234 × 9 + 5 = ____________________________

*(10) 357 + 219 + 448 + 389 = ____________________________

(11) 42 is what percent of 60? _____________ \%

(12) The GCD of 28 and 82 is _________________

(13) \((-3)(-5) - (-4)^2 - 2^2 = \) ____________________________

(14) 22 + 20 + 18 + \ldots + 2 = ____________________________

(15) 31 + 331 + 1331 = ____________________________

(16) 64 is what \% more than 48? _________________ \%

(17) 23 \times \frac{23}{25} = ____________________________ (mixed number)

(18) 24\% of 24 is ____________________________ (decimal)

(19) The multiplicative inverse of \(\frac{7}{6} \) is _________________

*(20) 8 \times 15 \times 1947 = ____________________________

(21) \(\frac{2}{5} + \frac{5}{3} = \) ____________________________ (mixed number)

(22) 214365 ÷ 8 has a remainder of _________________

(23) If \(f(x) = 4x^2 + 4x + 1 \), then \(f(13) = \) _________________

(24) 10111\text{\textsubscript{2}} = ____________________________ s

(25) If 13 bagels cost $14.30, then 7 bagels cost $____

(26) \(\frac{3}{4} \times \frac{3}{5} = \) ____________________________ (mixed number)

(27) The sum of three consecutive integers is 114. The largest integer is _________________

(28) If \(\frac{3}{4} = \frac{3x}{5} \), then \(x = \) ____________________________

(29) A pentagon has _________________ distinct diagonals

*(30) 248 \times 250 \times 252 = ____________________________

(31) 2 \times 4! + 5 \times 3! = ____________________________

(32) The set \(\{F, U, N\} \) has _________________ subsets

(33) The multiplicative inverse of 1.8333\ldots is ______

(34) 3 \times 2! + 4 \times 3! + 5 \times 4! = ____________________________

(35) (1000 + 1001) ÷ 9 has a remainder of _________________

(36) If \(5x^3 + 2x^2 - 5x + 3 = 0 \), then the product of the roots is ____________________________

(37) Which of the following numbers is both abundant and unlucky: 24, 25, or 28? _________________

(38) 51\% of _________________ is 17\% of 26.

(39) \(\{T, M, S, C, A, 2, 0, 1, 3\} \) has __ proper subsets

*(40) 248\% of 687 = ____________________________

(41) The distance between the point (1, 0) and the line \(y = x \) is _________________ units.

(42) \(20^2 \div 10^2 \times 5^2 = \) ____________________________

(43) If the sum of the interior angles of a regular \(n \)-gon is 900 degrees then \(n = \) _________________

(44) 27 \times 33 - 11 \times 81 = ____________________________
(45) If \(\frac{x + 7}{x - 4} + \frac{x - 4}{x + 7} \) is written as the mixed number \(\frac{B}{C} \), then \(B = \) ________________

(46) \(505^2 = \) ________________

(47) \(72 \times 0.41666 \ldots = \) ________________

(48) If \(8^x = 40 \) then \(8^{(x+1)} = \) ________________

(49) The length of an arc formed by a central angle of \(60^\circ \) is \(4\pi \). The radius of the circle is __________

*(50) \(4\pi^5 = \) ________________

(51) \(5C_3 = \) ________________

(52) The first 3 digits of \(\frac{13}{33} \) is 0. ________________

(53) A binomial expansion with a third term of \(6x^4y \) has how many terms? ________________

(54) If \(y \) varies inversely with \(x \) and \(y = 12 \) when \(x = 8 \), find \(x \) when \(y = 4 \). ________________

(55) Find the slope of the line containing the points \((5, 8) \) and \((11, 4) \). ________________

(56) The point \((-2, -4) \) is reflected over the \(y \)-axis to the point \((h, k) \). Find \(k \). ________________

(57) \((7 + 4i)(7 - 4i) = \) ________________

(58) \(\cot(-225^\circ) = \) ________________

(59) \(55 \div 1.666 \ldots = \) ________________

*(60) \(\sqrt[4]{1024} = \) ________________

(61) \(79^2 + 79 = \) ________________

(62) Change 0.4777\ldots to a base 10 fraction: ________________

(63) The sum of the exterior angles of a regular octagon is ________________ degrees

(64) The slope of the line \(6x + 2y = 4 \) is ________________

(65) \(1234 \div 34 \) = ________________

(66) \(\sqrt{-16} \times \sqrt{-9} = \) ________________

(67) Find \(x, 0 \leq x \leq 7, \) if \(x + 4 \equiv 1 \) (mod8). ________________

(68) \(89 + 34 + 13 + 5 + 2 + 1 = \) ________________

(69) \(2 \sin 165^\circ \cos 165^\circ = \) ________________

*(70) \(3125 \div 5.625 = \) ________________

(71) \(\int_{0}^{5} (5 - x) \, dx = \) ________________

(72) \(\int_{0}^{6} (x + 3) \, dx = \) ________________

(73) \(\frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} = \) ________________

(74) If \(f(x) = 3x - 2 \) then \(f(f(3)) = \) ________________

(75) Change 0.657 to a base-10 fraction: ________________

(76) \(\frac{1}{2} \times \frac{2}{3} \times \frac{4}{5} \times \frac{6}{7} = \) ________________

(77) \(12^{2002} \div 4^{2001} \) has a remainder of ________________

(78) \(\lim_{x \to 2} \left(\frac{x^2 - 3x + 2}{x - 2} \right) = \) ________________

(79) If \(f(x) = 3x - 1 \), then \(f^{-1}(2) = \) ________________

*(80) \(3 \times \frac{1}{13} \times \sqrt{441} \times 26 = \) ________________