Number Sense Exam 065, 4/7/2018

(1)
$$\frac{13}{400} =$$
 ______ % (decimal)

(2)
$$242 \div 9 =$$

(3)
$$1357 \times 5 =$$

(4)
$$\frac{3}{5} =$$

(5)
$$56 \div 4 + 3 \times 5 + 1 =$$

(6)
$$19^2 =$$

(7)
$$4.5 \times 8.5 =$$
 _____ (decimal)

(8)
$$65 \times .34 =$$

$$(9) 1+3+6+10+15 = \underline{\hspace{1cm}}$$

$$*(10) 94 \times 85 - 76 =$$

(11)
$$(34+65+96) \div 3$$
 has a remainder of _____

$$(12) \ \frac{3}{7} - \frac{3}{14} - \frac{3}{21} = \underline{\hspace{1cm}}$$

$$(13) \ 48 \times 24 - 48 \times 12 = \underline{\hspace{1cm}}$$

$$(14) \ 27^2 = \underline{\hspace{1cm}}$$

- (15) The median of 12, 20, 8, 14, 22, and 12 is _____
- (16) The mean of 2, 8, 4, 8, 2, 4, 8, 4, and 8 is _____
- (17) 24% of 24 is _____ (decimal)
- (18) 34 is 85% of what? _____
- (19) The sum of the proper divisors of 76 is _____

*(20)
$$(60 \div 3 \div 2 \times 3)^2 =$$

(21)
$$45 \times 65 =$$

- (22) The GCD of 28, 42, and 70 is _____
- (23) The sum of the GCD and LCM of 19 and 30 is _

(24)
$$2\frac{1}{4} + 1\frac{2}{3} =$$
 (mixed number)

(25) The number halfway between -12 and 62 on the number line is _____

$$(26) 7^3 =$$

$$(27) \left(8\frac{3}{4}\right)^2 = \underline{\qquad} \quad \text{(mixed number)}$$

(28)
$$65 \times 75 =$$

(29)
$$(23 + 12 \times 18) \div 8$$
 has a remainder of _____

$$*(30) \ 2345678 \div 911 =$$

(31) The sum of the roots of
$$2x^2 - 3x + 1 = 0$$
 is _____

$$(32) \ 3 \times 2! + 4 \times 3! + 5 \times 4! =$$

(33)
$$12\frac{12}{49} \div 3\frac{3}{7} =$$
 (mixed number)

(35) Set P has 63 proper subsets. How many elements are in set P?

(36)
$$44 \times \frac{47}{50} =$$

- (37) How far do you travel in 2 hrs and 20 minutes at a constant speed of 60 miles per hour? ____ miles
- (38) The diagonals of a rhombus are $2\sqrt{3}$ and $4\sqrt{3}$. The area of the rhombus is _____
- (39) Picture A is 8'' by 10'' and B is 9'' by 12''. The ratio of A's perimeter to B's perimeter is _____

$$*(40) 545 \times 449 =$$

- (41) If 104 is divided into three parts proportional to 2, 4, and 7, then the largest part is ______
- (42) 45 miles per hour = _____ feet per second

(43) If
$$A^4 \div A^7 \times A^k = A^5$$
, and $A > 1$, then $k =$ _____

(44)
$$11 \times \frac{13}{15} =$$
 (mixed number)

- (45) If $3^{(x-1)} = 13.1$, then $3^{(x+1)} =$
- (46) $\sqrt{75} \times \sqrt{27} =$ _____
- (47) 12% of $466\frac{2}{3} =$
- (48) The sum of the roots of $x^2 6x + 9 = 0$ is _____
- $(49) \frac{1}{4}(64^2 36^2) = \underline{\hspace{1cm}}$
- *(50) $3\pi^2 \times (2.1)(\pi^4) =$
- (51) If the odds of losing the game is 35%, then the probability of winning the game is _____
- (52) 750 pounds is _______ % of a ton.
- $(53) \ \frac{2}{3} + \frac{1}{2} + \frac{3}{8} + \dots = \underline{\hspace{1cm}}$
- (54) $80^{\circ} = k\pi \text{ radians. } k =$ _____
- (56) Let $\frac{8!}{7!} = \frac{x!}{(x+1)!}$. Find x.
- (57) How many groups of 4 people can be made using 6 people?
- $(58) (\log_4 64) \div (\log_4 16) = \underline{\hspace{1cm}}$
- (59) Find the slope of the line parallel to the line $2x = 4 \frac{2}{5}y$.
- *(60) $67 \times 71 \times 73 =$
- $(61) \ 6+2+\frac{2}{3}+\ldots=$
- (62) If f(x) = 2x + 3 and $g(x) = x^2$, then g[f(-4)] =

- (63) If $\sin \theta = .4$ and $\cos \theta = .9$, then $\tan \theta =$
- (64) 480 miles per hour ______ feet per second
- (65) $\sqrt{12544} =$
- (66) $(\cos 225^{\circ})(\sin 315^{\circ}) =$
- (67) $\sqrt{-16} \times \sqrt{-9} =$
- (68) (3+4i)(-4+2i) = a+bi and a =
- (69) $g(x) = x^2 + 1$ and $h(x) = 1 x^2$, then g(h(2)) =
- *(70) $\sqrt{1025} \times \sqrt{730} =$ _____
- (71) $57289 \div 11$ has a remainder of _____
- (72) Change .22 base 4 to a base ten decimal.
- $(73) \ 3^3 4^3 5^3 = \underline{\hspace{1cm}}$
- $(74) \sin^{-1}(.6) + \sin^{-1}(.8) =$ (degrees)
- (75) Change $.33_5$ to a base 10 fraction.
- (76) The area of the ellipse $4x^2 + 9y^2 = 36$ is $k\pi$. k =______
- (77) Find $k, 0 \le k \le 6$, if $(6!)(3!) \equiv k \pmod{7}$.
- $(78) \ \frac{1}{3} + \frac{1}{5} + \frac{1}{15} + \frac{1}{45} = \underline{\hspace{1cm}}$
- $(79) 15^2 14^2 + 13^2 12^2 + 11^2 = \underline{\hspace{1cm}}$
- *(80) 3210 miles/hour = _____ feet/second