(1) The negative reciprocal of 0.6 is ____________

(2) \(1 + 2 \times (5 - 20) \div 15 = \) ____________

(3) \(20.15 - 2.015 = \) ____________ (decimal)

(4) \(511 - 115 = \) ____________

(5) \(572 \div 9 = \) ____________ (mixed number)

(6) \(15.15 \times 4 = \) ____________ (decimal)

(7) \(511 - 115 = \) ____________

(8) \(572 \div 9 = \) ____________ (mixed number)

(9) \(21 + 6 + 10 + 14 + 18 + 22 + 26 = \) ____________

(10) \(1947 + 1948 + 111 + 1967 = \) ____________

(11) The mode of 4, 3, 7, 4, 2, 7, 5, and 4 is ________.

(12) Three-fifths of 2 quarts is ________ fluid ounces

(13) LXXIV = ____________ (Arabic Numeral)

(14) The median of 1, 5, 2, 3, 3, 2, 1, &4 is ________

(15) \(\frac{5}{6} - \frac{5}{12} - \frac{5}{24} = \) ____________

(16) \(15 \times 28 = \) ____________

(17) \(2 + 6 + 10 + 14 + 18 + 22 + 26 = \) ____________

(18) \(4 + 9 + 14 + 19 + \ldots + 49 = \) ____________

(19) \(\frac{2}{3} - \frac{5}{6} = \) ____________

(20) \(\sqrt{678} \times \sqrt{1151} = \) ____________

(21) \(21^2 + 63^2 = \) ____________

(22) If 4 t-shirts sell for $25.00, then 6 t-shirts will sell for $__ ____________

(23) If 6 pens cost $1.50 then 21 pens cost $________

(24) 45 is \(\frac{1}{2}\) \% of ____________

(25) \(7^3 = \) ____________

(26) If \(3x - 5 = 15 - x\), then \(2x + 1 = \) ____________

(27) The discriminant of \(3x^2 - 2x + 1 = 0\) is ________

(28) \(2 + 1 + 3 + 4 + 7 + \ldots + 29 = \) ____________

(29) \(x + (x + 1) + (x + 2) + (x + 3) + (x + 4) = 50\), then \(x + 5 = \) ____________

(30) \(\sqrt{34596} = \) ____________

(31) The sum of the roots of \(6x^2 + x + 3 = 0\) is ________

(32) The set \(\{s, l, o, p, e\}\) has ________ 3-element subsets

(33) \(1 + 1 + 2 + 3 + 5 + 8 + \ldots + 34 + 55 = \) ____________

(34) Find the simple interest on $600 at \(8\frac{1}{2}\) \% for 24 months. $________

(35) If \(3x + 2y = 7\) and \(4x - 2y = 1\), then \(x = \) ________

(36) \(125 + 5 + 1 = \) ____________ 5

(37) The diagonal of a square is \(3\sqrt{5}\) in. The area of the square is ____________ square in.

(38) If \(x^3 = \sqrt{5x^6 + 5x^5 + 5x^5 + 5x^5 + 5x^5,}\) where \(x > 1\), then \(x = \) ____________

(39) If set \(A = \{n, u, m, b, e, r\}\) and set \(B = \{b, e, a, r\}\), then \(A \cup B\) has ________ elements

(40) \(22 \times 44 \times 66 = \) ____________

(41) The cube root of 250,047 is ____________

(42) \(45 \times 16 - 24 \times 30 = \) ____________

(43) The side opposite \(60^\circ\) in a right triangle is 3. The length of the hypotenuse is ________

(44) If \(A^4 \div A^7 \times A^k = A^5\), and \(A > 1\), then \(k = \) _______
(45) 72 \times .08333\ldots =

(46) If \(x + 4y = 5\) and \(x - 3y = 4\) then \(y = \ldots\)

(47) \(6^3 \times 6^8 \div 6^k = 6^{-1}\), then \(k = \ldots\)

(48) Find the area of the triangle whose sides are 10, 10, and 16 units long.

(49) \(5^3 \times 2^5 = \ldots\)

*(50) \(\sqrt[3]{26789} \times \sqrt[3]{911} \times 31 = \ldots\)

(51) If \(\log_x 27 = 1.5\), then \(x = \ldots\)

(52) \(\frac{3}{8} - \frac{26}{73} = \ldots\)

(53) The slope of the line containing the points \((-1, 2)\) and \((-3, 4)\) is

(54) \(1^2 + 2^2 + 3^2 + \ldots + 7^2 = \ldots\)

(55) A regular polygon with a central angle of 72° has a perimeter of 60″. Each side is \ldots\ inches

(56) \(\sin \left(\frac{5\pi}{3}\right) \times \sin \left(\frac{5\pi}{3}\right) = \ldots\)

(57) If \(\log_a 9 = .8\), then \(\log_a 81 = \ldots\)

(58) The measure of an interior angle of a regular hexagon is \ldots\ degrees

(59) \(4P_3 \times 4C_3 = \ldots\)

*(60) \((24)^4 = \ldots\)

(61) \(2 \sin 165° \cos 165° = \ldots\)

(62) \(21 \times 28 + 28 = \ldots\)

(63) When tossing 5 coins, what is the probability of getting 3 heads?

(64) \(\ln(e^3) = \ldots\)

(65) \(35^2 - (30^2 - 5^2) = \ldots\)

(66) How many positive integers less than or equal to 20 are relatively prime to 20?

(67) \(g(x) = x^2 + 1\) and \(h(x) = 1 - x^2\), then \(g(h(2)) = \ldots\)

(68) A bag has 3 red, 6 white, and 9 blue marbles. What is the probability of drawing a red one?

(69) Find \(x\) if \(\begin{bmatrix} -2 & -1 \\ 1 & x \end{bmatrix} = 5\).

*(70) \(\sqrt[3]{1025} \times \sqrt[3]{730} = \ldots\)

(71) \(\frac{1}{10} + \frac{1}{40} + \frac{1}{88} + \frac{1}{154} = \ldots\)

(72) Change \(0.444\ldots\) base 9 to a base 10 fraction.

(73) \(\int_{-1}^{2} 3x^2 \, dx = \ldots\)

(74) The vertical asymptote of \(\frac{2x - 1}{3x + 4}\) is

(75) \(6^3 - 5^3 + 4^3 = \ldots\)

(76) If the initial point of a vector is \((2, 5)\) and the terminal point is \((-1, 1)\), then \(\|v\| = \ldots\)

(77) \(13 \times \frac{13}{14} - 13 = \ldots\)

(78) If \(f(x) = \frac{3}{1 - x}\), then \(f^{-1}(2) = \ldots\)

(79) \(\int_{1}^{4} (2x + 3) \, dx = \ldots\)

*(80) \(6666 \text{ feet/second} = \ldots\) miles/hour