(1) $25^2 = $	
(2) $2003 \times 111 =$	
(3) $\frac{2}{9} \div 3\frac{1}{4} =$	
(4) $1216 \div 4 =$	
(5) $(5) \div (-2.5) =$	(decimal)
(6) $2.007 + 20.07 = $	(decimal)
(7) $3456 + 6543 = $	
(8) $12 - 8 \div 4 \times 2 - 3 =$	
(9) $12 \times 342 =$	
*(10) $6002 + 602 + 206 - 2006 =$	
(11) The median of $12, 20, 8, 14, 22$, and 12	2 is
(12) The largest prime factor of 285 is	
(13) $322 \times 13 =$	
$(14) \ (-3)(-6) - (-7) - (-4)(8) = $	
(15) $\frac{5}{6} + \frac{6}{5} = $ (min	xed number)
(16) $2016 \div 6$ has a remainder of	
(17) The median of $1, 5, 2, 3, 3, 2, 1, \&4$ is _	
(18) $123 \times 8 + 3 =$	
(19) The number of positive prime integers76 is	s that divide
*(20) $224488 \div 111 =$	
(21) $15 \times 11 \times 25 =$	
(22) $0.2050505 =$	(fraction)
(23) If two dozen doughnuts cost \$1.44, doughnuts will cost \$, then three

	(24) Find the smallest integer $k, k > 1$ such that $3k - 2$
	is a prime number
	(25) $44^2 + 36^2 = $
	(26) $(25 \times 12 + 18 \times 34) \div 8$ has a remainder of
(decimal)	(27) $8^7 \div 9$ has a remainder of
(decimal)	(28) If $x - y = 6$ and $x + y = -6$, then $xy = $
	(29) $54 \times 51 =$
	*(30) $7777 \times 888 =$
	(31) If $f(x) = x^4 - 2x^2 + 1$, then $f(3)$ is
	$(32) \ 15^2 - 20^2 = _$
s	(33) $4\frac{1}{4} \times 16\frac{1}{4} = $ (mixed number)
	$(34) \ 5 \times 4! - 4 \times 3! - 3 \times 2! = _$
	(35) $(4^4 + 3^3 \times 2^2) \div 5$ has a remainder of
	(36) If $8 - x = 3$, then $3x - 8 =$
d number)	(37) 12 is to 18 as 15 is to (decimal)
	$(38) \ 3+2+5+7+12+\ldots+81+131 = _$
	$(39) \ 2014_8 - 1206_8 = __\8$
	*(40) $(.125 \times 336)^2 =$
hat divide	(41) If $75 \times 34 = 15 \times y$, then $y =$
	(42) Find the smallest prime number $p > 0$ such that
	5p-4 is also a prime number.
	(43) The largest integer x such that $3 + 2x < 15$ is
(fraction)	<i>x</i> =
then three	(44) $998 \times 997 =$
	(45) If $x + y = 7$ and $xy = 2$ then $x^3 + y^3 = $

Number Sense Exam $041,\,9/15/2017$

- (46) The sum of the product of the roots taken two at a time of $2x^3 + 4x^2 - 6x = 8$ is _____
- (47) $21\frac{3}{7}\% =$ _____ (proper fraction)
- $(48) \ \frac{59}{67} \frac{10}{11} = _$
- (49) $54 \times 11 + 99 \times 6 =$ _____
- *(50) $\sqrt[3]{26789} \times \sqrt{911} \times 31 =$ _____
- (51) The probability of winning is 60%. The odds of losing is _____
- (52) How much time has passed from 7:15 am to 3:45 pm the same day? ______ hours
- (53) $36^2 + 57^2 =$ _____
- (54) $_{11}C_9 =$ _____
- (55) Y varies directly with X and Y = 2 when X = 6. Find Y when X = 1.
- (56) If two dice are rolled, the odds that the sum of the faces is 2, 3, or 12 is _____
- (57) $\frac{5!}{3!2!} =$ _____
- (58) $\frac{6 \times 7! 7 \times 6!}{6!} =$ ______
- (59) $_{7}P_{4} =$ _____
- *(60) $29 \times 30 \times 29 \times 30 =$ _____
- (61) $\frac{5}{24} + \frac{5}{48} + \frac{5}{80} + \frac{5}{120} =$ _____
- (62) $\frac{5}{9} + 1.8 \frac{16}{45} =$ _____
- (63) $\cos\left(\frac{7\pi}{3}\right) =$ _____ (64) $\cos^2 30^\circ - \sin^2 30^\circ =$ (65) $5^6 \div 4$ has a remainder of _____ (66) $A = \begin{vmatrix} 1 & 2 \\ 5 & 6 \end{vmatrix}$ and $B = \begin{vmatrix} 3 & 4 \\ 7 & 8 \end{vmatrix}$. Find |A - B|. (67) If $(\sqrt{a^3})(\sqrt[3]{a^4}) = (\sqrt[n]{a^k})$, then $k = _$ (68) det $\left(\begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ -3 & -4 \end{bmatrix} \right) = _$ (69) If $\log_4 x = -2$, then x =_____ $*(70) 645731 \div 1111 =$ _____ (71) If $f(x) = 3x + 5x^2 - 7x^4$, then f'(1) = _____ (72) $143 \times 91 =$ _____ (73) The *y*-intercept of $y = (2x - 3)^2$ is (h, k) and k =_____ (74) If $5x - 3 \equiv 2 \pmod{6}, 0 \le x \le 5$, then x =_____ (75) $\int_{-1}^{1} (5x-1) dx =$ _____ (76) $\sum_{n=1}^{3} (x+1) =$ _____ (77) If f(x) = 3x - 5 and g(x) = 2x + 1, then f[g(-1)] =______ (78) Each face of an icosahedron has ______ sides (79) A vertical asymptote of $y = \frac{x^2 + 1}{x + 1}$ *(80) $\pi^2 \times \pi^3 \times e =$