(1) \(\frac{5}{6} + \frac{5}{12} + \frac{5}{20} = \) \(\text{fraction} \)
(2) \(\frac{1}{4} + 1 + \frac{1}{6} = \) \(\text{improper fraction} \)
(3) \(\frac{1}{16} \% = \) \(\text{decimal} \)
(4) \(\frac{3}{4} \% = \) \(\text{fraction} \)
(5) \(719 + 917 = \)
(6) \(1357 \times 5 = \)
(7) \(65 \times 85 = \)
(8) \(7.26 - 0.89 = \) \(\text{decimal} \)
(9) \(2.5 \times 48 = \)

(10) \(84 + 426 + 47 - 249 = \)
(11) \(23 \times 45 = \)
(12) \(111 \times 212 = \)
(13) \(\frac{4}{5} - 2 \frac{7}{12} = \) \(\text{mixed number} \)
(14) Which is smaller: \(-\frac{3}{7}\) or \(-\frac{19}{49}\)?
(15) CMLXIV = \(\) \(\text{Arabic Numeral} \)
(16) \(5 + 7 + 9 + 11 + 13 + \ldots + 21 = \)
(17) \(48 \) has \(\) \(\text{positive integral divisors} \)
(18) \(2 \) bushels = \(\) \(\text{pecks} \)
(19) The multiplicative inverse of 11 is \(\)

*(20) \(754214 \div 214 = \)
(21) The additive inverse of 5.2 is \(\)
(22) \(56 \) has \(\) \(\text{positive integral divisors} \)
(23) \(8^2 + 24^2 = \)

(24) If 4 pens cost $1.64, then 2 dozen pens cost $_
(25) The largest palindrome less than 200 is \(\)
(26) 130 plus 70\% of 130 is \(\)
(27) Find \(f(3) \) if \(f(x) = 9x^2 - 30x + 25 \).
(28) \(21^2 - 19^2 = \)
(29) \(35 \times 85 = \)

*(30) \(14 \times 11 \times 33 = \)
(31) If \(\sqrt[5]{5 - \sqrt{3 + \sqrt{x}}} = 1 \), then \(x = \)
(32) \(101 \times 318 = \)
(33) Change 10111 base 2 to base 4.
(34) \(324_6 = \) \(\)
(35) \(2 + 4 + 6 + \ldots + 20 = \)
(36) The product of the roots of \(7x^2 - 4x + 3 = 0 \) is \(\)
(37) If \(5x + 7 = 6x - 2 \) then \(x = \)
(38) \((4^4 + 3^3 \times 2^2) \div 5 \) has a remainder of \(\)
(39) The diagonal of a square is \(3\sqrt{5} \) in. The area of the square is \(\) \(\text{square in.} \)

*(40) \(31.25\% \times 481 \div \frac{1}{16} = \)
(41) \(20 + 15 + 35 + 50 + 85 + 135 + 220 + 355 = \)
(42) \(131 \times 223 = \)
(43) \(\sqrt{5} \times \sqrt{20} \times \sqrt{5} = \)
(44) If \(4^{3x} = 125 \), then \(4^{(x+2)} = \)
(45) If \(8^{2x} = 36 \), then \(8^{(x+1)} = \)
(46) \(57671 \div 101 = \)
(47) \(124 \times 142 = \)
(48) The point (3, 5) is reflected over the x-axis to the point (h, k). Find h + k.

(49) If x + y = -2 and xy = 5, then x^3 + y^3 = _____

*(50) 444 \times 33 \frac{1}{3} \div 0.444 \ldots =

(51) The 11th term in the sequence 4, 7, 10, 13, \ldots is

(52) If (5 + i)^2 = a + bi, then a =

(53) If \log_9 k = 2.5, then k =

(54) 65 \times 35 =

(55) 45 \text{ degrees} = \frac{\pi}{k} \text{ radians}. \text{ Find } k.

(56) Y \text{ varies directly with } X \text{ and } Y = 2 \text{ when } X = 6. \text{ Find } Y \text{ when } X = 1.

(57) 444 \times \frac{4}{37} =

(58) (5 - 7i)(5 + 7i) = a + bi. \text{ Find } a + b

(59) 108 \times 107 =

*(60) 6\frac{1}{4} \text{ radians} = \text{ degrees}

(61) 50 \text{ is } 6.25\% \text{ of }

(62) \sqrt{14641} =

(63) \frac{5}{6} + 1.2 - 2 =

(64) 111 \times 56 =

*(65) f(x) = 5x^3 + 4x^2 + 3x - 2 \text{ divided by } x + 1 \text{ has a remainder of }

(66) 448 \times 48 =

(67) The simplified sum of the coefficients of the expansion of (4x + 3y)^3 =

(68) \text{If the initial point of a vector is (2, 3) and the terminal point is (4, 5), then } ||v||^2 =

(69) 106 \times 107 =

*(70) 428571 \times 217 =

(71) 0.2353535\ldots6 = \frac{\text{ }}{6} \text{ (proper fraction)}

(72) \text{If } f(x) = x^4 + x^2 - x, \text{ then } f''(-3) =

(73) \text{The polar coordinates of the rectangular coordinates (1, } \sqrt{3}) \text{ are } (r, k\pi). \text{ Find } r.

(74) 2(1!) + 3(2!) + 4(3!) + 5(4!) + 6(5!) =

(75) 111 \times 27 =

(76) \text{Change .33_5 to a base 10 fraction.}

(77) \text{If } f(x) = 2x^2 - 3, \text{ then } 3f'(4) =

(78) \text{A number is randomly drawn from the set } \{1, 2, 3, 4, 5, 6, 7, 8, 9\}. \text{ What are the odds that the number drawn is an odd number?}

(79) \text{If } g(x) = 2x^2 - 3x + 1, \text{ then } g'(2) =

*(80) 3.75 \text{ square miles} = \text{ acres}