Number Sense Exam $036,\,8/17/2017$

(1) $\frac{5}{6} + \frac{5}{12} + \frac{5}{20} = $	(fraction)
(2) $\frac{1}{4} + 1 + \frac{1}{6} = $ (improper	r fraction)
(3) $1\frac{1}{16}\% = $	(decimal)
(4) $3\frac{3}{5}\% = $	(fraction)
(5) $719 + 917 =$	
(6) $1357 \times 5 =$	
(7) $65 \times 85 =$	
(8) $7.2689 = $	(decimal)
(9) $2.5 \times 48 =$	
*(10) $84 + 426 + 47 - 249 = $	
(11) $23 \times 45 =$	
(12) $111 \times 212 =$	
(13) $4\frac{5}{6} - 2\frac{7}{12} = $ (mixed)	l number)
(14) Which is smaller: $-\frac{3}{7}$ or $-\frac{19}{49}$?	
(15) $CMLXIV = $ (Arabic	Numeral)
(16) $5 + 7 + 9 + 11 + 13 + \ldots + 21 = $	
(17) 48 has positive integra	al divisors
(18) 2 bushels =	pecks
(19) The multiplicative inverse of 11 is	
*(20) $754214 \div 214 =$	
(21) The additive inverse of 5.2 us	
(22) 56 has positive integra	al divisors
(23) $8^2 + 24^2 = $	

(24) If 4 pens cost \$1.64, then 2 dozen pens cost \$
(25) The largest palindrome less than 200 is
(26) 130 plus 70% of 130 is
(27) Find $f(3)$ if $f(x) = 9x^2 - 30x + 25$.
(28) $21^2 - 19^2 = $
(29) $35 \times 85 =$
*(30) $14 \times 11 \times 33 =$
(31) If $\sqrt{5 - \sqrt{3 + \sqrt{x}}} = 1$, then $x =$
(32) $101 \times 318 =$
(33) Change 10111 base 2 to base 4 4
(34) $324_6 = $ 10
$(35) \ 2+4+6+\ldots+20 = _$
(36) The product of the roots of $7x^2 - 4x + 3 = 0$ is
(37) If $5x + 7 = 6x - 2$ then $x = $
(38) $(4^4 + 3^3 \times 2^2) \div 5$ has a remainder of
(39) The diagonal of a square is $3\sqrt{5}$ in. The area of the square is square in.
*(40) $31.25\% \times 481 \div \frac{1}{16} =$
(41) $20 + 15 + 35 + 50 + 85 + 135 + 220 + 355 = $
(42) $131 \times 223 =$
$(43) \sqrt{9} \times \sqrt{20} \times \sqrt{5} = \underline{\qquad}$
(44) If $4^{3x} = 125$, then $4^{(x+2)} = $
(45) If $8^{2x} = 36$, then $8^{(x+1)} = $
(46) $57671 \div 101 =$
(47) $124 \times 142 =$

(48)	The point $(3,5)$ is reflected over the <i>x</i> -axis to the
р	oint (h, k) . Find $h + k$.
(49)	If $x + y = -2$ and $xy = 5$, then $x^3 + y^3 =$
*(50)	$444 \times 33\frac{1}{3} \div 0.444 \dots =$
(51) 4	The 11th term in the sequence ,7, 10, 13, is
(52)	If $(5 + i)^2 = a + bi$, then $a = $
(53)	If $\log_9 k = 2.5$, then $k =$
(54)	$65 \times 35 =$
(55)	45 degrees = $\frac{\pi}{k}$ radians. Find k
(56) F	Y varies directly with X and $Y = 2$ when $X = 6$.
Г	III I I WIEII A = 1.
(57)	$444 \times \frac{4}{37} = \underline{\qquad}$
(58)	(5 - 7i)(5 + 7i) = a + bi. Find $a + b$
(59)	$108 \times 107 =$
*(60)	$6\frac{1}{4}$ radians = degrees
(61)	50 is 6.25% of
(62)	$\sqrt{14641} = \underline{\qquad}$
(63)	$\frac{5}{6} + 1.2 - 2 = _$
(64)	$111 \times 56 =$

(65) $f(x) = 5x^3 + 4x^2 + 3x - 2$ divided by $x + 1$ has a remainder of
(66) $44_8 \times 4_8 = $ 8
(67) The simplified sum of the coefficients of the expansion of $(4x + 3y)^3 =$
(68) If the initial point of a vector is $(2,3)$ and the terminal point is $(4,5)$, then $ v ^2 =$
(69) $106 \times 107 =$
*(70) $428571 \times 217 =$
(71) $0.23535356 = _\6$ (proper fraction)
(72) If $f(x) = x^4 + x^2 - x$, then $f''(-3) =$

- (73) The polar coordinates of the rectangular coordinates $(1, \sqrt{3})$ are $(r, k\pi)$. r = ______
- $(74) \ 2(1!) + 3(2!) + 4(3!) + 5(4!) + 6(5!) = _$
- (75) $111 \times 27 =$ _____
- (76) Change $.33_5$ to a base 10 fraction.
- (77) If $f(x) = 2x^2 3$, then 3f'(4) =_____
- (78) A number is randomly drawn from the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. What are the odds that the number drawn is an odd number?
- (79) If $g(x) = 2x^2 3x + 1$, then g'(2) =_____
- *(80) 3.75 square miles = $_$ acres