(1) $4 ÷ (5 + 6 - 7) \times 8 = \underline{\hspace{2cm}}$

(2) $\frac{5}{6} + \frac{7}{8} = \underline{\hspace{2cm}}$ (improper fraction)

(3) $\frac{7}{8} ÷ .2 = \underline{\hspace{2cm}}$ (improper fraction)

(4) $1212 ÷ 9 = \underline{\hspace{2cm}}$ (mixed number)

(5) $2\frac{1}{6} + 1\frac{11}{12} = \underline{\hspace{2cm}}$

(6) $5566 ÷ 11 = \underline{\hspace{2cm}}$

(7) $2\frac{3}{4} - 3\frac{4}{5} = \underline{\hspace{2cm}}$ (mixed number)

(8) $2\frac{5}{8} = \underline{\hspace{2cm}}$ % (decimal)

(9) $562 - 628 = \underline{\hspace{2cm}}$

*(10) $188 + 818 + 881 - 118 = \underline{\hspace{2cm}}$

(11) $(34 + 65 + 96) ÷ 3$ has a remainder of \underline{\hspace{2cm}}

(12) $2 + 4 + 6 + \ldots + 28 + 30 = \underline{\hspace{2cm}}$

(13) Which is larger: $.72$ or $\frac{7}{9}?$ \underline{\hspace{2cm}}

(14) $35 ÷ 1\frac{2}{5} = \underline{\hspace{2cm}}$

(15) Which is larger: $-2\frac{2}{5}$ or $-2.35?$ \underline{\hspace{2cm}}

(16) 26 is 65% of what? \underline{\hspace{2cm}}

(17) $2010 ÷ 9$ has a remainder of \underline{\hspace{2cm}}

(18) $23 \times 15 + 33 \times 15 = \underline{\hspace{2cm}}$

(19) 25% of 25 is \underline{\hspace{2cm}} (decimal)

*(20) $\sqrt{839} \times \sqrt{963} = \underline{\hspace{2cm}}$

(21) $45^2 + 46^2 = \underline{\hspace{2cm}}$

(22) $\sqrt{12} + \sqrt{18} = \sqrt{x}$. Find x. \underline{\hspace{2cm}}

(23) Which of the following is an odious number: $63, 31, \text{ or } 15.$ \underline{\hspace{2cm}}

(24) 12% of 63 is 14% of \underline{\hspace{2cm}}

(25) Find the area of the rhombus whose diagonals are 22 and 18. \underline{\hspace{2cm}} \text{ sq. units.}

(26) If one dozen eggs cost $\$2.40$, then 2.5 dozen eggs cost $\$ \underline{\hspace{2cm}}$

(27) $101110_2 = \underline{\hspace{2cm}} \text{ s}$

(28) $423156 ÷ 12$ has a remainder of \underline{\hspace{2cm}}

(29) $1^2 + 2^2 + 3^2 + 5^2 + 8^2 = \underline{\hspace{2cm}}$

*(30) $43205 ÷ 111 = \underline{\hspace{2cm}}$

(31) If $x + (x + 1) + (x + 2) + (x + 3) = 66$, then $(x + 4) = \underline{\hspace{2cm}}$

(32) $0.2333 \ldots = \underline{\hspace{2cm}}$ (fraction)

(33) $\frac{1}{5} \times 15\frac{1}{5} = \underline{\hspace{2cm}}$

(34) If $4^{-1} + x^{-1} = 3^{-1}$, then $x = \underline{\hspace{2cm}}$

(35) The ratio of the sides of a rectangle is 3:5. The perimeter is 32. The shorter side is \underline{\hspace{2cm}}

(36) $(5! + 3!) ÷ 4! = \underline{\hspace{2cm}}$ (mixed number)

(37) $73^2 - 72^2 = \underline{\hspace{2cm}}$

(38) 12% of 200 is \underline{\hspace{2cm}} % of 50

(39) $4\frac{1}{3} \times 5\frac{1}{3} = \underline{\hspace{2cm}}$ (mixed number)

*(40) $16\frac{1}{2}\%$ of $598 \times 11 = \underline{\hspace{2cm}}$

(41) If P is \frac{2}{3} of Q and Q is $33\frac{1}{3}\%$ of R, then P is what percent of R? \underline{\hspace{2cm}} \%$

(42) If $2^{3.14} = 8.82$, then $2^{2.14} = \underline{\hspace{2cm}}$

(43) A set containing k elements has 1023 proper subsets. Find $k.$ \underline{\hspace{2cm}}
(44) \[133_4 + 23_4 = \] 4

(45) \[29 \times 33 + 4 = \]

(46) An exterior angle of a regular hexagon has a measure of degrees

(47) \[(13)^2 - (8)(21) = \]

(48) \[\frac{(11!)(3!)}{(9!)} = \]

(49) The units digit of 17^5 is

*(50) \[719 \times 875 = \]

(51) \[316 + 226 - 356 = \]

(52) \[(1 - 3i)(2 - 4i) = a + bi, \text{ then } a + b = \]

(53) \[-11^2 + 10^2 - 9^2 + 8^2 - \ldots - 1^2 = \]

(54) \[202 \times 53 = \]

(55) 18\% of \[316\frac{2}{3} = \]

(56) \[(3 - 2/mbox{i})^2 = \]

(57) \[\frac{4}{9} - \frac{2}{3} + 1 - \frac{3}{2} + \ldots = \]

(58) \[36^2 + 57^2 = \]

(59) The largest integer \(x\) such that \(3 < 4 - 5x\) is

*(60) \[714.2857 \times 246 = \]

(61) \[1(0!) + 2(1!) + 3(2!) + 4(3!) + 5(4!) = \]

(62) \[76^2 = \]

(63) 15 miles per hour = ______ feet per second

(64) If \(\ln(27) - k\ln(3) - 2\ln(3), \text{ then } k = \)

(65) If \(f(x) = \frac{3 - 2x}{4}, \text{ then } f^{-1}(-1) = \)

(66) \[\frac{4\pi}{9} \text{ radians} = \]

(67) The simplified coefficient of the \(x^2\) term in the expansion of \((2x - 3)^3\) is

(68) If \(g(x) = x^2\) and \(g^{-1}(x) > 0, \text{ then } g^{-1}(676) = \)

(69) The radius of the circumscribed circle around a 5, 12, 13-right triangle is

*(70) The perimeter of the ellipse \[145x^2 + 168y^2 = 24360 \]

(71) \[\int_{-1}^{2} 4x \, dx = \]

(72) Change .33 base 6 to a base 10 fraction.

(73) \[16 \times 625 = \]

(74) If \(f(x) = 2x^3 - 3x^2 + 4x, \text{ then } f''(1) = \]

(75) \[\int_{1}^{3} 2x^3 \, dx = \]

(76) If \(f(x) = 3x - 1\) and \(g(x) = 2, \text{ then } f(g(x)) = \]

(77) \[9^4 \div 243 = \]

(78) The remainder when \(x^3 - 4x + 3\) is divided by \(x + 2\) is

*(79) \[(909)^2 = \]

(80) \[34 \times 68 \times 17 \div 51 = \]