(1) 313 \times 13 =
(2) 1283 \div 4 = \text{ (decimal) }
(3) 12 \times 13 + 17 - 11 =
(4) 65 \times 85 =
(5) 572 \div 9 = \text{ (mixed number) }
(6) \frac{2}{7} + 2\frac{1}{8} = \text{ (mixed number) }
(7) 20.06 + 2.007 = \text{ (decimal) }
(8) 2 + 3 \times 5 - 7 =
(9) \frac{3}{5} \div \frac{9}{25} =
*(10) 2009 \times 6 - 2009 =
(11) 45\% \text{ if } 45 =
(12) DCIV \times IV = \text{ (Arabic Numeral) }
(13) 5 - 9 - 2|4 - 2| + |1 - 3| =
(14) 7 + 12 + 17 + 22 + \ldots + 52 + 57 =
(15) \frac{3^4}{(2^3)(5^3)} = \text{ (decimal) }
(16) 15^2 =
(17) 1.4 \text{ is what } \% \text{ of } 20? \, \%
(18) 21 \text{ is } \% \text{ less than } 35
(19) \text{The LCM of } 52 \text{ and } 78 =
*(20) 453 + 231 \times 786 =
(21) 30 \text{ more than } 40\% \text{ of } 50 =
(22) \ldots .121212 \ldots + .151515 \ldots =
(23) \text{The set } \{f, o, r, t, y\} \text{ has } \text{4-element subsets}
(24) \text{How many integers between 1 and } 20 \text{ are relatively prime to } 20?
(25) \text{Find the simple interest on } $1500 \text{ at } 1.5\% \text{ for } 15 \text{ months. } \$
(26) \{s, l, o, p, e\} \cap \{l, i, n, e\} \text{ has } \text{ distinct elements }
(27) \frac{1}{8} \times \frac{16}{8} = \text{ (mixed number) }
(28) \text{If } 2.22\ldots \times k = 1, \text{ then } k =
(29) 42 \div 6 + 8 \times 3 - 2 =
*(30) 13 \times 13 \times 13 =
(31) \text{If } \frac{1}{2} + \frac{1}{x} = \frac{2}{3}, \text{ then } x =
(32) 3 + 6 + 9 + 15 + 24 + \ldots + 102 + 165 =
(33) 9^3 =
(34) \text{If } 3x + 5 = 1, \text{ then } 6x - 1 =
(35) 75 \times 284 =
(36) \text{The roots of a cubic equation are } 1, 2, \text{ and } 3. \text{ The equation is } x^3 - 6x^2 + 11x =
(37) \text{Let } 5x - 3 = 1 \text{ then } 4x + 2 =
(38) \text{If } x = 5 \text{ and } y = 3, \text{ then } 9x^2 - 6xy + y^2 =
(39) \text{The set } \{T, W, O\} \text{ has } \text{ proper subsets}
*(40) \sqrt{122015} =
(41) 34^2 - 21 \times 55 =
(42) \text{Find the harmonic mean of } 2 \text{ and } 5.
(43) \text{If } 2x + 3 = 4, \text{ then } 5x - 6 =
(44) \text{An interior angle of a regular octagon has a measure of } \text{ degrees}
(45) 32 \div .181818\ldots =

(46) The slope of the line passing through the points (5, -2) and (-1, 4) is ____________.

(47) $15 \times 4! - 5! = ________________

(48) If $A^4 \div A^7 \times A^k = A^5$, and $A > 1$, then $k = ____________$

(49) The sum of the product of the roots taken two at a time of $2x^3 - 3x^2 - 4x + 5 = 0$ is ________________.

*(50) The volume of a cylinder with a radius of 3″ and a height of 4″ is ________________ cu. in.

(51) The sum of the coefficients in the binomial expansion of $(3x + 4y)^3$ is ________________.

(52) If $44_b = 40$, then $b = ________________$

(53) $131 \times 212 = ________________$

(54) \left(\frac{x^2 - 6x + 9}{x - 3} \right) \left(\frac{x^2 + 6x + 9}{x^2 - 9} \right) = x + __________$

(55) If y varies inversely with x and $x = 4$ when $y = 3$, find x when $y = 8$. ________________

(56) If $\log_k 32 = 5$, then $k = ________________$

(57) $33 \times 32 = ________________$

(58) How many ordered pairs are in the Cartesian product of (a, b) and (a, b, c)? ________________

(59) If two dice are rolled, the probability that the sum of the faces is greater than 10 is ________________

*(60) $(3.1\pi)(2.7e) \left(\frac{1 + \sqrt{5}}{2} \right) = ________________$

(61) The volume of a sphere with radius 3 is $k\pi$ and $k = ________________$

(62) $5^6 \div 4$ has a remainder of ________________

(63) 15 miles per hour = ________ feet per second

(64) If $x > 0$ and $x + 1 = \sqrt{x^2 - 3x + 11}$, then $x = ________________$

(65) The sum of the coefficients of $(x - y)^3$ is ________________

(66) Change $0.322\ldots7$ to a base 7 fraction ________________

(67) $(31_5 - 12_5) \times 11_5 = ________________ 5$

(68) $g(x) = x^2 + 1$ and $h(x) = 1 - x^2$, then $g(h(2)) = ________________$

(69) The greatest integer function is written as $f(x) = [x]$. Find $f(1 - 2\pi)$. ________________

*(70) $7e^2 \times 9\pi^2 = ________________$

(71) How many groups of 3 people can be made from 7 people? ________________

(72) $1^3 + 2^4 + 3^3 + 4^3 + 5^3 = ________________$

(73) If $f(x) = 4 - 3x$, then $f^{-1}(2) = ________________$

(74) The greatest integer function is written as $f(x) = [x]$. Find $[\sqrt{6} + \sqrt{7}]$. ________________

(75) $1^3 + 2^4 + 3^3 + \ldots + 10^3 = ________________$

(76) $444 \times \frac{2}{27} = ________________$ (mixed number)

(77) The largest value of k such that $6C_k = 15$ is ________________

(78) Change $\frac{17}{36}$ to a base 6 decimal. ________________

(79) $i^{66} = ________________$

*(80) $658 \div 16\frac{2}{3} \times .33\ldots = ________________$