(1) \(50 \times 200.8 = \quad \)
(2) \(10 - 8 + 6 \times 4 \div 2 = \quad \)
(3) \(12.3 \times .4 = \quad \) (decimal)
(4) \(33^2 = \quad \)
(5) \(2010 \div 11 \) has a remainder of
(6) \(2009 - 314 = \quad \)
(7) \(11 \times 54 = \quad \)
(8) \(20.15 - 2.015 = \quad \) (decimal)
(9) \(XLII = \quad \) (Arabic Numeral)

*(10) \(2468 + 3579 + 1001 = \quad \)
(11) \(CDLX + XCVI = \quad \) (Arabic Numeral)
(12) \(\text{The LCM of 12, 24, and 18 is} \)
(13) \(33 \times 27 = \quad \)
(14) \(\text{The multiplicative inverse of } 3^{-2} \) is
(15) \(39 - 13 \div 4 \times 12 = \quad \)
(16) \(\frac{1}{3} + \frac{1}{6} + \frac{1}{9} = \quad \) (fraction)
(17) \(13 \times 223 = \quad \)
(18) \(3 + 9 + 15 + 21 + \ldots + 33 = \quad \)
(19) \(83 \times 38 = \quad \)

* (20) \(1206 \times 2012 = \quad \)
(21) \(15 \times 25 \times 16 = \quad \)
(22) \(|2 - 3 - 4|5 - 6| + 7| = \quad \)
(23) \(\text{Find the area of a square whose diagonal is 8in.} \) sq. inches

(24) \(2^3 + 3^3 + 4^3 = \quad \)
(25) \(\text{The multiplicative inverse of } -1.111\ldots \) is
(26) \(\text{If one dozen eggs cost } $2.40, \text{ then 2.5 dozen eggs cost } \) $
(27) \(2057 \div 17 = \quad \)
(28) \(.1555\ldots = \quad \) (proper fraction)
(29) \(\text{If } 2x + 3 = 5x - 9, \text{ then } x = \quad \)

*(30) \(783209 \div 247 = \quad \)
(31) \(\text{The area of an equilateral triangle is } \sqrt{3} \text{ cm}^2. \text{ The side of the triangle is } \quad \) cm
(32) \(\text{If } a = 5 \text{ and } b = 3, \text{ then } (a-b)(a^2 + ab + b^2) = \quad \)
(33) \(\text{How many positive integral divisors does } 144 \) have?
(34) \(\text{If } \sqrt{5} - \sqrt{3} + \sqrt{x} = 1, \text{ then } x = \quad \)
(35) \(\text{The set } \{m, i, n, u, l, e\} \text{ has } \quad \) 3-element subsets
(36) \(\text{How many subsets containing 3 elements does the set } \{p, o, l, a, r\} \) have?
(37) \(\text{Let } x = 2y, \text{ } y = 3z, \text{ and } z = -1. \text{ Find } xyz. \quad \)
(38) \(12345 \times 8 + 5 = \quad \)
(39) \(\quad \)% of 56 is 110% of 28

* (40) \(\sqrt{3122016} = \quad \)
(41) \(\text{The slope of line containing the points } (-2, 3) \text{ and } (4, -5) \) is
(42) \(\text{Find the slope of a line perpendicular to the line containing the points (2, 4) and (-3, 6).} \quad \)
(43) \(\text{If } 3x - 1 > 14 \text{ then } x > \quad \)
(44) \(\text{If } 4^{2x} = 25, \text{ then } 4^{3x} = \quad \)
(45) \[\frac{3}{4}(15^2 - 9^2) = \]

(46) \[A^3 \times A^k \div A^4 = A^5. \text{ If } A > 1, \text{ then } k = \]

(47) The x-intercept of the line \[2x + 4y = 5 \] is \((h, k)\). Find \(h\).

(48) \[13 \times 15 + 1 = \]

(49) If \[7^{2x} = 144, \] then \[7^{3x} = \]

*(50) \[31^3 \div 83 \times 4 = \]

(51) \((4 - 7i)(4 + 7i) = a + bi. \) Find \(a + b\).

(52) 18\% of \(133\frac{1}{3}\) is

(53) Let \[\frac{7!}{5!} = \frac{(x - 1)!}{(x - 2)!} \]. Find \(x\).

(54) \[38^2 + (30 + 8)(30 - 8) = \]

(55) If \(4C_k = 6\), then \(k = \)

(56) \[48 + 24 + 12 + 6 + 3 + \ldots = \]

(57) The ninth term of 9, 14, 19, 24, \ldots is

(58) \[300_6 \div 4_6 = \]

(59) If \((4 + 3i) \div (2i) = a + bi, \) then \(a = \)

*(60) \[875 \times 888 \div 77 = \]

(61) 132 feet per second\(=\) miles per hour

(62) \[\log_2[\log_3(\log_2 512)] = \]

(63) \[\frac{5!}{2^1 + 3^1} \equiv x(\text{mod}7), \] and \(0 \leq x \leq 6. \) \(x = \)

(64) \[(123_5 + 321_5) \div 4 \] has a remainder of

(65) \[f(x) = 2x - 5 \text{ and } g(x) = 4x + 3, \] then \[f(g(-1)) = \]

(66) If \(f(x) = 2x^3 - 6, \) then \(f'(1) = \)

(67) The slope of the line perpendicular to the line \[2x - 4y = 3 \]

(68) \[(456_7 + 654_7) \div 6 \] has a remainder of

*(69) \[1 - 2\sin^2 30^\circ = \]

*(70) \[5^1 + 4^2 + 3^3 + 2^4 + 1^5 = \]

(71) \[\lim_{x \to -2} \frac{x^3 + 8}{x + 2} = \]

(72) If \(f(x) = 2x^3 - 6, \) then \(f'(-1) = \)

(73) The smallest value of \(x\) in the domain of \(f(x)\) so that \(f(x) = \sqrt{4x + 5}\) has a real valued range is

(74) \[\int_0^1 \sqrt{x} \, dx = \]

(75) Find the least value of \(k\) so that the six digit number \(3467k2\) is divisible by \(6. \) \(k = \)

(76) \(Y\) varies directly with \(x\) and \(y = 3\) when \(x = 6.\) Find \(y\) when \(x = 22. \) \(y = \)

(77) If \(f(x) = 2(x + 3), \) then \(f^{-1}(-4) = \)

(78) \[\int_1^3 (x + 5) \, dx = \]

(79) \((4, 60^\circ)\) are polar coordinates for the \((x, y)\) rectangular coordinates. \(x = \)

*(80) \[5300 \text{ inches/second} = \] \(\text{miles/hour}\)

Page 2