(1) 29 \times 11 = \text{__________________________}

(2) \frac{7}{80} = \text{__________________________} \% \text{ (decimal)}

(3) 44 \times 75 = \text{__________________________}

(4) 12 \times 22 + 16 \times 22 = \text{__________________________}

(5) 1234 \div 9 = \text{__________________________} \text{ (mixed number)}

(6) 61 \times 16 = \text{__________________________}

(7) 8 \div 5 + 11 \times 2 - 14 = \text{__________________________}

(8) 2006 \div 9 = \text{__________________________} \text{ (mixed number)}

(9) .3 + 70\% - \frac{1}{2} = \text{__________________________} \text{ (fraction)}

*(10) 135 + 246 + 789 = \text{__________________________}

(11) The additive inverse of |−5| is \text{__________________________}

(12) 31 \times \frac{31}{35} = \text{__________________________} \text{ (mixed number)}

(13) If 12 ounces of pickles cost $1.25, then 3 pounds of pickles will cost $\text{__________________________}

(14) 113 \times 107 = \text{__________________________}

(15) CDXLIV + MDLXIX = \text{______} \text{ (Arabic Numeral)}

(16) What is 27\% of 27? \text{__________________________} \text{ (decimal)}

(17) CDXLIV + MDLXIX = \text{______} \text{ (Arabic Numeral)}

(18) 16\% \text{ of } 20 = \text{__________________________}

(19) (-3)(-6) - (-7) - (-4)(8) = \text{__________________________}

*(20) 123456 \div 789 = \text{__________________________}

(21) 45 \text{ is } 2\frac{1}{2}\% \text{ of } \text{__________________________}

(22) 210 has how many positive prime divisors? \text{______}

(23) 4^{3/2} = \text{__________________________}

(24) The number of positive integral divisors of $5^3 \times 3^2 \times 2^1$ is \text{__________________________}

(25) How many positive integral divisors does 64 have? \text{__________________________}

(26) 4^{-2} + 4^{-3} = \text{__________________________}

(27) 40 base 5 is equivalent to \text{______} base 8

(28) |1 - 3| - |6 + 10| + |15 - 21| = \text{__________________________}

(29) 2 + 1 + 3 + 4 + 7 + \ldots + 29 = \text{__________________________}

*(30) 23 \times 31 \times 249 = \text{__________________________}

(31) How far will a train travel in 2 hours and 5 minutes at a rate of 144 mph? \text{___________} \text{ miles}

(32) 9^3 = \text{__________________________}

(33) \frac{5! - 3!}{4!} = \text{__________________________} \text{ (mixed number)}

(34) If the perimeter of a square is 12.8 cm, then the area of the square is \text{___________} \text{ sq. cm.}

(35) (4^4 + 3^2 \times 2^2) \div 5 \text{ has a remainder of } \text{___________}

(36) \sqrt{4 - \sqrt{2 + \sqrt{x - 1}}} = 1, \text{ then } x = \text{___________}

(37) Set A has 5 elements, set B has 6 elements, and \text{ } A \cup B \text{ has 7 elements. } A \cap B \text{ has } \text{___________} \text{ elements.}

(38) 770 \times 13 = \text{__________________________}

(39) 36\% \text{ of } \text{__________________________} \text{ is } 12\% \text{ of } 210.

*(40) \sqrt{20164} = \text{__________________________}

(41) Let a^3 \div a^4 \div a^5 = a^k, \text{ where } a > 1. \text{ } k = \text{___________}

(42) \text{The radius of the circle } x^2 + y^2 + 2x + 6y = 6 \text{ is } \text{__________________________}

(43) The point (2,7) is reflected across the y-axis to point (h,k). Find h. \text{__________________________}
(44) If \(2^{3.14} = 8.82 \), then \(2^{2.14} = \) _____________

(45) Find the units digit of \(18^6 \). _____________

(46) If the height of an equilateral triangle is 12'', then its area is \(4k\sqrt{3} \) sq. in. Find \(k \). _____________

(47) Let \(3x - y = 1 \) and \(x - 2y = 2 \). Find \(y \). _____________

(48) If \(xy = 1 \) and \(x + y = 2 \), then \(x^3 + y^3 = \) _____________

(49) If a \(4'' \) by \(6'' \) picture is enlarged to \(6'' \) by \(10'' \), its area is multiplied by _____________

*(50) 14.2857 \times 348 = \) _____________

(51) \(\sin \left(\frac{5\pi}{4} \right) \times \cos \left(\frac{5\pi}{4} \right) = \) _____________

(52) Find the smallest number greater than 4 that divides 572. _____________

(53) The sum of the coefficients of the expansion of \((4x - y)^3 \) is _____________

(54) \(U = \{ x \mid -8 < x < 6, x \in \{ \text{Odd Integers} \} \} \) is the universal set and \(\{ -3, 3 \} \in U \). How many elements are in \(\{ -3, 3 \}'? \) _____________

(55) \(\frac{6! + 2!}{4!} = \) _____________ (mixed number)

(56) If two dice are rolled, the odds that the sum of the faces is 2, 3, or 12 is _____________

(57) The number of distinct diagonals of a convex decagon is _____________

(58) If \(3^x = 1.2 \) then \(9^x = \) _____________

(59) The eleventh term of \(6, 11, 16, 21 \ldots \) is _____________

*(60) 26 \times 35 + 24 \times 75 = \) _____________

(61) If \(\log_5 2 = .25 \) and \(\log_5 x = 1 \), then \(x = \) _____________

(62) Two dice are tossed. What is the probability that the sum is eight? _____________

(63) The slope of the line \(4x - 5y = 6 \) is _____________

(64) If \(f(x) = [x - 2.4] \) is the greatest integer function, then the value of \(f(8.1) \) is _____________

(65) \(49^2 + 49 = \) _____________

(66) Change 0.4777\ldots \) to a base 10 fraction. _____________

(67) \(\frac{4}{7} - \frac{15}{29} = \) _____________

(68) How many ways can Snow White and the seven dwarfs be seated at the round table? _____________

(69) A box contains black, red, blue, and green pens. How many different sets of 3 pens can be packaged? _____________

*(70) The area of \(40x^2 + 45y^2 = 1800 \) is _____________

(71) The vertical displacement of \(y = 5 \cos 4(x + 3) - 2 \) is _____________

(72) The horizontal asymptote of \(y = \frac{2x^2 - 1}{3x^2 + 2} \) is \(y = \) _____________

(73) If \(f(x) = 3x^4 - 2x^3 + x^2 \), then \(f''(1) = \) _____________

(74) Change .33 base 6 to a base 10 fraction. _____________

(75) Five coins are tossed. What is the probability of getting 2 tails and 3 heads? _____________

(76) If \(f(x) = \sqrt{3 + 4x} \), where \(x, f(x) \in \{ \text{Real} \} \), then the range of \(f(x) \) is \(\{ f(x) \mid f(x) \geq \) _____________

(77) \(\int_0^3 x^2 \, dx = \) _____________

(78) Find \(x, 0 \leq x \leq 3 \) if \(24^2 \equiv x \pmod{5} \). _____________

(79) \(f(x) = x^4 + 4x^3 + 6x^2 + 4x + 1 \), find \(f'(1) \). _____________

*(80) \(863 \div 6.25\% \times \frac{1}{2} = \) _____________